

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2014

PMT

Section A

Q.1	D		[1]
Q.2	Α		[1]
Q.3 (a)	An electron formed when a neutron char an electron emitted by the nucleus	nges into a proton /	[1]
(b)	³² S		[1]
(c)	Time taken for half of the atoms in a radi similar)	ioisotope to decay (or	[1]
(d)	42 days		[1]
Q.4	Combustion of C and H ₂ = $(2 \times -394) + ($ = -1646 kJ mol ⁻¹	(3 × –286) (1)	
	ΔH = –1646 – (–1560) = –86 kJ mol ⁻¹	(1)	[2]
Q.5	AgSMass1.080.16Ar10832Moles0.010.005	(1)	
	2 1 Formula = Ag ₂ S	(1)	[2]

Total Section A [10]

Section B

Q.6	(a)	(i)	B is ${}^{37}\text{CI}^+$ C is $({}^{35}\text{CI} - {}^{35}\text{CI})^+$			(1) (1)	[2]
		(ii)	C = 54, E = 6 Ratio of C : E is 9:1			(1) (1)	[2]
		(iii)	Ratio of 35 Cl: 37 Cl is 3:1 Ratio of 35 Cl — 35 Cl : 37 Cl — 37 Cl is 3:1 × 3:1	= 9:1		(1) (1)	
			or				
			Probability of atom being ³⁵ Cl is ¾ and that of ³⁷ Cl is ¼	(1)			
			Probability of ${}^{35}\text{CI} - {}^{35}\text{CI} \text{ is } {}^{3}_{4} \times {}^{3}_{4} = 9/16$ and ${}^{37}\text{CI} - {}^{37}\text{CI} \text{ is } {}^{1}_{4} \times {}^{1}_{4} = 1/16$	(1)			[2]
	(b)		$A_{\rm r} = \frac{(79 \times 50.69) + (81 \times 49.31)}{100}$		(1)		
			<i>A</i> _r = 79.99		(1)		[2]

Total [8]

Q.7 (a) Use weighing scales to weigh the metal oxide (1) Use measuring cylinder to pour hydrogen peroxide solution and water into a conical flask (1) Immerse flask in water bath at 35 °C (1) Add oxide to flask and connect flask to gas syringe (1) Measure volume of oxygen every minute for 10 minutes / at regular time intervals (1) (any 4 of above, credit possible from labelled diagram) [4] (b) Oxide A because reaction is faster [1] 18 cm³ (c) (i) [1] 10 cm³ (ii) [1] (d) Concentration of hydrogen peroxide has decreased (1) reaction rate decreases / fewer successful collisions (1) [2] All the hydrogen peroxide has decomposed / (e) the same quantity of hydrogen peroxide was used [1] 25 cm³ (f) [1] Reaction will take less time (g) (1) Reactants collide with more (kinetic) energy (1)More molecules have the required activation energy (1) [3] QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

Total [15]

PMT

3

Q.8	(a)	Electrons within atoms occupy fixed energy levels increasing energy / nitrogen has electrons in two s $1s^2 2s^2 2p^3$	or shells of hells (1) (1)	
		Electrons occupy atomic orbitals within these shells / The first shell in nitrogen has s orbitals and the second shell s and p orbitals (1)		
		A maximum of two electrons can occupy any orbita Each s orbital in nitrogen contains two electrons	al / (1)	
		Each with opposite spins	(1)	
		Orbitals of the same type are grouped together as a sub-shell / There are three p orbitals in nitrogen's p sub-shell (1)		
		Each orbital in a sub-shell will fill with one electron starts / In nitrogen's p sub-shell each orbital contai electron	before pairing ns one (1)	
		(configuration mark + any 3 of above)		[4]
		QWC The information is organised clearly and co using specialist vocabulary where appropriate	herently,	[1]
	(b)	Atomic spectrum of hydrogen is a series of lines (1 that get closer as their frequency increases (1) (credit possible from labelled diagram))	
		Lines arise from atom / electrons being excited by energy (1) electron jumping up to a higher energy level (1) falling back down and emitting energy (in the form electromagnetic radiation) (1) to the n = 2 level (1) (any three points for maximum 3 marks)	absorbing of	
		Since lines are discrete energy levels must have fix Since energy emitted is equal to the difference bet energy levels, ΔE is a fixed quantity or quantum	xed values / ween two (1)	[6]

(c)	(i)	It has greater nuclear charge (1) but little / no extra shielding (1)		[2]
	(ii)	In Be less shielding of outer electron outweighs smaller nuclear charge	(1) (1)	
		or		
		Be outer electron closer to nucleus Be has greater effective nuclear charge	(1) (1)	[2]
	(iii)	I. Too much energy required to form B^{3+} ion		[1]
		II. $K^{*}(g) \rightarrow K^{2*}(g) + e^{-}$		[1]
		 III. Value of 1st and 3rd I.E. will be higher Value of 2nd I.E. will be smaller (accept large jump in I.E. value would be b electrons for 1 mark) 	(1) (1) vetween 2 nd and 3 rd	[2]
		-7		r -1

Total [19]

PMT

5

Q.9	(a)		Enthalpy change when one mole of a compound is its (constituent) elements (1) in their standard states / under standard conditions	formed from (1)	[2]
	(b)	(i)	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$		[1]
		(ii)	–242 = 436 + 248 – 2(O—H) 2(O—H) = 926	(1)	
			$O-H = 463 \text{ kJ mol}^{-1}$	(1)	[2]
	(c)	(i)	I. Burning hydrogen will not produce CO_2 (or SO_2) as pollutants		[1]
			II. Hydrogen is very flammable, storing as MgH ₂ is safer / MgH ₂ is solid therefore volume occupied by given amount of hydrogen is less		[1]
		(ii)	If the MgH_2 is not kept dry, hydrogen will be formed could be a potential explosion	and there	[1]
		(iii)	Moles MgH ₂ = $\frac{70000}{26.32}$ = 2659.6 (2660)	(1)	
			Moles H ₂ = 5319.2 (5320)	(1)	
			Volume H ₂ = $1.28 \times 10^5 \text{ dm}^3$	(1)	[3]
(d)		(i)	An increase in temperature would decrease the yie increase in pressure would increase the yield	ld and an	[1]
		(ii)	Forward reaction is exothermic so equilibrium shifts temperature is increased	to the left as (1)	
			More gaseous moles on the l.h.s. so equilibrium sh right as pressure is increased	ifts to the (1)	[2]
	(e)		Lower temperatures can be used Energy costs saved More product can be made in a given time (so more	(1) (1) e can be sold) (1)	
			Enable reactions to take place that would be impose otherwise Less fossil fuels burned to provide energy (so less	sible (1) CO ₂ formed)	
			(any 3 of above)	(1)	[3]
			QWC Legibility of text; accuracy of spelling, punctu grammar, clarity of meaning	ation and	[1]

Total [18]

Q.10	(a)		Moles NaCl = <u>900</u> = 15.38 58.5	(1)	
			Moles $Na_2CO_3 = 7.69$	(1)	
			Mass $Na_2CO_3 = 7.69 \times 106 = 815(.4) g$	(1)	[3]
	(b)	(i)	2.52 g		[1]
		(ii)	Moles $Na_2CO_3 = 0.02$ Moles $H_2O = 0.14$ (1) $x = 7$	(1) (1)	[2]
	(c)	(i)	Moles = 0.5 × 0.018 = 0.009		[1]
		(ii)	0.0045		[1]
		(iii)	0.0045 × 106 = 0.477		[1]
		(iv)	% = 0.477/0.55 = 86.7 %		[1]

Total [10]

PMT

Total Section B [70]