$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2014

CH1

Section A

Q. 1

D
Q. 2

A
Q. 3 (a) An electron formed when a neutron changes into a proton / an electron emitted by the nucleus
(b) $\quad{ }^{32} \mathrm{~S}$
(c) Time taken for half of the atoms in a radioisotope to decay (or similar)
(d) 42 days
Q. $4 \quad$ Combustion of C and $\mathrm{H}_{2}=(2 \times-394)+(3 \times-286)$
$=-1646 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{H}=-1646-(-1560)=-86 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Q. 5

	Ag	S
Mass	1.08	0.16
A_{r}	108	32
Moles	0.01	0.005
$\quad 2$		1
Formula $=\mathrm{Ag}_{2} \mathrm{~S}$		

(1)
(1)

Section B

Q. 6
(a) (i)
B is ${ }^{37} \mathrm{Cl}^{+}$
C is $\left({ }^{35} \mathrm{Cl}-{ }^{35} \mathrm{Cl}\right)^{+}$
(1)
[2]
(ii) $\mathbf{C}=54, \mathbf{E}=6$
Ratio of $\mathbf{C}: \mathbf{E}$ is $9: 1$
[2]
(iii) Ratio of ${ }^{35} \mathrm{Cl}:{ }^{37} \mathrm{Cl}$ is $3: 1$
Ratio of ${ }^{35} \mathrm{Cl}-{ }^{35} \mathrm{CI}:{ }^{37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}$ is $3: 1 \times 3: 1=9: 1$
or
Probability of atom being
${ }^{35} \mathrm{Cl}$ is $3 / 4$ and that of ${ }^{37} \mathrm{CI}$ is $1 / 4$
Probability of
${ }^{35} \mathrm{Cl}-{ }^{35} \mathrm{Cl}$ is $3 / 4 \times 3 / 4=9 / 16$ and ${ }^{37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}$ is $1 / 4 \times 1 / 4=1 / 16$
(b) $\quad A_{\mathrm{r}}=\frac{(79 \times 50.69)+(81 \times 49.31)}{100}$
$A_{\mathrm{r}}=79.99$
Q. 7 (a) Use weighing scales to weigh the metal oxide

Use measuring cylinder to pour hydrogen peroxide solution and water into a conical flask
Immerse flask in water bath at $35^{\circ} \mathrm{C}$
Add oxide to flask and connect flask to gas syringe
Measure volume of oxygen every minute for 10 minutes / at regular time intervals
(any 4 of above, credit possible from labelled diagram)
(b) Oxide \mathbf{A} because reaction is faster
(c) (i) $18 \mathrm{~cm}^{3}$
(ii) $10 \mathrm{~cm}^{3}$
(d) Concentration of hydrogen peroxide has decreased (1) reaction rate decreases / fewer successful collisions (1)
(e) All the hydrogen peroxide has decomposed / the same quantity of hydrogen peroxide was used
(f) $25 \mathrm{~cm}^{3}$
(g) Reaction will take less time

Reactants collide with more (kinetic) energy
More molecules have the required activation energy (1)
QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter
Q. 8 (a) Electrons within atoms occupy fixed energy levels or shells of increasing energy / nitrogen has electrons in two shells $1 s^{2} 2 s^{2} 2 p^{3}$

Electrons occupy atomic orbitals within these shells /
The first shell in nitrogen has sorbitals and the second shell s and p orbitals (1)

A maximum of two electrons can occupy any orbital / Each s orbital in nitrogen contains two electrons

Each with opposite spins
Orbitals of the same type are grouped together as a sub-shell / There are three p orbitals in nitrogen's p sub-shell

Each orbital in a sub-shell will fill with one electron before pairing starts / In nitrogen's p sub-shell each orbital contains one electron
(configuration mark + any 3 of above)
QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate
(b) Atomic spectrum of hydrogen is a series of lines (1)
that get closer as their frequency increases (1)
(credit possible from labelled diagram)
Lines arise from atom / electrons being excited by absorbing energy (1)
electron jumping up to a higher energy level (1)
falling back down and emitting energy (in the form of electromagnetic radiation) (1)
to the $\mathrm{n}=2$ level (1)
(any three points for maximum 3 marks)
Since lines are discrete energy levels must have fixed values / Since energy emitted is equal to the difference between two energy levels, $\Delta \mathrm{E}$ is a fixed quantity or quantum (1)
(c) (i) It has greater nuclear charge (1) but little / no extra shielding (1)
(ii) In Be less shielding of outer electron outweighs smaller nuclear charge
or
Be outer electron closer to nucleus (1)
Be has greater effective nuclear charge
(1)
[2]
(iii) I. Too much energy required to form B^{3+} ion
II. $\mathrm{K}^{+}(\mathrm{g}) \rightarrow \mathrm{K}^{2+}(\mathrm{g})+\mathrm{e}^{-}$
III. Value of $1^{\text {st }}$ and $3^{\text {rd }}$ I.E. will be higher

Value of $2^{\text {nd }} I . E$. will be smaller
(1) (accept large jump in I.E. value would be between $2^{\text {nd }}$ and $3^{\text {rd }}$ electrons for 1 mark)
Q. 9 (a) Enthalpy change when one mole of a compound is formed from its (constituent) elements (1)
in their standard states / under standard conditions (1)
(b) (i) $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
(ii) $\quad-242=436+248-2(\mathrm{O}-\mathrm{H})$
$2(\mathrm{O}-\mathrm{H})=926$
$\mathrm{O}-\mathrm{H}=463 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) (i) I. Burning hydrogen will not produce $\mathrm{CO}_{2}\left(\right.$ or $\left.\mathrm{SO}_{2}\right)$ as pollutants
II. Hydrogen is very flammable, storing as MgH_{2} is safer / MgH_{2} is solid therefore volume occupied by given amount of hydrogen is less
(ii) If the MgH_{2} is not kept dry, hydrogen will be formed and there could be a potential explosion
(iii) Moles $\mathrm{MgH}_{2}=\frac{70000}{26.32}=2659.6$ (2660)

Moles $\mathrm{H}_{2}=5319.2$ (5320)
Volume $\mathrm{H}_{2}=1.28 \times 10^{5} \mathrm{dm}^{3}$
(d) (i) An increase in temperature would decrease the yield and an increase in pressure would increase the yield
(ii) Forward reaction is exothermic so equilibrium shifts to the left as temperature is increased

More gaseous moles on the I.h.s. so equilibrium shifts to the right as pressure is increased
(e) Lower temperatures can be used

Energy costs saved
More product can be made in a given time (so more can be sold)
Enable reactions to take place that would be impossible otherwise
Less fossil fuels burned to provide energy (so less CO_{2} formed)
(any 3 of above)
QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning
Q. 10 (a) Moles $\mathrm{NaCl}=\frac{900}{58.5}=15.38$

Moles $\mathrm{Na}_{2} \mathrm{CO}_{3}=7.69$
Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=7.69 \times 106=815(.4) \mathrm{g}$
(b) (i) 2.52 g
(ii) Moles $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.02$
Moles $\mathrm{H}_{2} \mathrm{O}=0.14$ (1) $x=7$
(1)
[2]
(c) (i) Moles $=0.5 \times 0.018=0.009$
(ii) 0.0045
(iii) $0.0045 \times 106=0.477$
(iv) $\%=0.477 / 0.55=86.7 \%$

Total [10]

Total Section B [70]

